
model for the estimation of the variability of delays at signalized
intersections with a specific focus on predicting the variance of
delays of vehicles traversing a signalized approach during a given
time interval.

An approximate model for predicting the variance of delays is pre-
sented. The methodologies applied to develop the approximate model
are outlined, followed by presentation of the development of the
approximate model. Then the discrete cycle-by-cycle simulation
model that was developed for calibrating and validating the proposed
model is described. This simulation model is then used to generate
data for calibrating and validating the proposed model under a vari-
ety of signal operating conditions. Applications of the developed
model are demonstrated last through its use in a sensitivity analysis
and in determining reliability-oriented optimal cycle times and levels
of service. Finally, conclusions and recommendations are presented.

ASSUMPTIONS AND NOTATION

The delay that a particular vehicle experiences when it travels through
the approach to a signalized intersection depends on a number of fac-
tors, including the probabilistic distribution of arrival flow, signal tim-
ings, and the time when the vehicle arrives at the approach. In a real
application environment, many of these factors are random variables,
which makes accurate estimation of this delay a very complicated
process. As an initial research effort, the following idealized road
traffic and signal control conditions are considered in this paper:

1. The intersection approach consists of a single through lane
controlled by a fixed-time signal. The approach has unlimited space
for queuing and has a constant saturation flow rate.

2. The vehicle arrival at the approach is a random variable with a
known probabilistic distribution. The rate of vehicle arrivals during
the evaluation time is assumed to be constant. No initial queue is
present at the beginning of the evaluation time. The flow rate
increases abruptly from zero to the rate for the evaluation time. The
traffic stream consists only of passenger-car units (pcu).

Consider the cumulative arrival and departure of vehicles during
the time interval [0, T] at the stopline of a signalized approach as
illustrated in Figure 1. The delay for a particular vehicle arriving at
time t, called overall delay and noted as D, is considered to include
two components: uniform delay and overflow delay, as follows:

where the uniform delay component, D1, is defined as that portion of
delay incurred by a vehicle when the approach is undersaturated and
all vehicles arrive uniformly. The overflow delay component, D2, rep-
resents that portion of delay caused by temporary overflow queues
resulting from the random nature of arrivals and by continuous

D D D= +1 2 1( )

Delays that individual vehicles may experience at a signalized intersec-
tion are usually subject to large variation because of the randomness
of traffic arrivals and interruption caused by traffic signal controls.
Although such variation may have important implications for the plan-
ning, design, and analysis of signal controls, currently no analytical
model is available to quantify it. The development of an analytical model
for predicting the variance of overall delay is described. The model 
is constructed on the basis of the delay evolution patterns under two
extreme traffic conditions: highly undersaturated and highly oversatu-
rated conditions. A discrete cycle-by-cycle simulation model is used to
generate data for calibrating and validating the proposed model. The
practical implications of the model are demonstrated through its use in
determining optimal cycle times with respect to delay variability and in
assessing level of service according to the percentiles of overall delay.

The ability to accurately quantify vehicle delays at signalized inter-
sections is a critical component for the planning, design, and analy-
sis of signal controls. As a result of random fluctuations in traffic flow
and interruptions caused by traffic controls, delays that individual
vehicles experience at a signalized approach are often subject to
highly stochastic and time-dependent variation. It has been increas-
ingly recognized that the estimate of the variability of delays is also
of importance for many applications (1–3). For example, knowledge
of the variability of delays makes it possible to estimate the confi-
dence limits about the mean delays and thus provide a more infor-
mative comparison of alternative signal plans in identifying optimal
signal settings. By considering the variability of delay, more reliable
signal control strategies may be generated, potentially leading to
improved levels of service at signalized intersections.

The problems of estimating delays at signalized intersections have
been extensively studied in the literature; however, the majority of the
work has focused on developing models for estimating mean delay—
a point estimate of stochastic delays. Detailed discussions of these
average delay prediction models have been provided by Allsop (4),
Newell (5), and Hurdle (6). However, much less work has been done
to quantify the variability of delay at a signalized approach. Teply and
Evans (7) analyzed the delay distribution at a signalized approach for
the evaluation of signal progression quality. They observed that most
of the delay distributions are bimodal, and a point estimator is not
adequate to describe these distributions. By considering the cyclic
overflow delay over time as a Markov chain, Kimber and Hollis (8),
Cronje (9), and recently Olszewski (1, 10) developed numerical
methods to calculate the average delay and time-dependent distribu-
tion of average cyclic delay. This type of model, although capable
of completely specifying the delay distribution, requires substantial
computational resources for calculating and storing state and transi-
tion probabilities and therefore is not well suited for use in practical
situations. The objective of this paper is to develop an analytical
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arrive uniformly at a constant arrival rate less than or equal to capac-
ity; Var[D2] is the variance of random delay or the difference between
the variance of overall delay and the variance of uniform delay. The
variance of uniform delay can be derived theoretically and the vari-
ance of overflow delay can be directly calibrated from simulation
data. A detailed description of the development of these models is
provided next.

APPROXIMATE MODEL FOR VARIANCE 
OF OVERALL DELAY

The variance of uniform delay, Var[D1], represents the variation of
uniform delay that would be experienced by vehicles arriving dur-
ing time interval [0, T ]. This variation results from the uncertainty
of the vehicle’s arrival time during each cycle of the interval. The
vehicle can arrive at any moment within a cycle and thus experience
variable delays as a result of the signal control. An estimate of this
variance component can be obtained theoretically on the basis of a
deterministic queuing model with vehicles arriving uniformly during
the cycle (2):

In order to establish a model for the variance of delay caused by an
overflow queue, two extreme traffic conditions are first investigated:
undersaturated conditions (x < 1.0) and oversaturated conditions (x >
1.0). For undersaturated conditions, overflow delay experienced by a
vehicle arriving during the time interval [0, T] is mainly caused by
occasional overflows of traffic from each cycle. The relationship
between the variance of this delay and the degree of saturation can be
approximated from the well-known Pollaczek-Khintchine formula for
an M/G/1 system (for the general formula and derivation) (17) by
supposing that the signal is acting as a server with a constant service
time 1/ca, as follows:

It should be emphasized that the foregoing model is merely an approx-
imate estimate of the variance because a steady state may not be
reachable during time interval [0, T]. Nevertheless, the equation can
be used to illustrate the qualitative relationship between the variance
of delay and the degree of saturation. With this assumption, the vari-
ance is time-independent and an infinite variance would be predicted
as the degree of saturation (x) approaches unity. In reality, at high
degrees of saturation, the system is not likely to settle into a steady
state by time T. Consequently, it can be expected that Equation 5 pro-
vides a reasonable approximation of the variance only under light
traffic conditions (x << 1.0).

If the intersection approach is highly oversaturated during time
period [0, T ], there is a high probability that an overflow queue always
exists during the period from time 0 to time T. Consider a vehicle
arriving at time t during time period [0, T]. The overflow queue for a
vehicle arriving at time t, Qt, can be determined as the total arrivals
minus the total departures:

The number of arrivals, Nt, is a random variable with a mean equal
to qt. The delay experienced by the vehicle can then be simply
determined on the basis of the overflow queue:
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overflow when the arrival rate during the time period [0, T] exceeds
the capacity.

The estimation of the overflow delay component in Equation 1 is
complicated as a result of the complex time-dependent stochastic
nature of the queuing process, and currently no theory is available
for the development of a single analytical model suitable across all
saturation levels. Past research has mainly focused on developing
approximate models for estimating the average overall delay using
simulation data as a mechanism to obtain data for calibration (8,
11–15). A number of similar delay models are available to provide
estimates of this measure. For example, the Canadian delay model
uses Equation 2 to estimate the average overall delay (13, 16), in
which the units of some parameters have been changed for use in
this paper:

where

E[D] = average overall delay (s);
T = evaluation time (s);
cy = cycle time (s);
λ = ge /cy;
ge = effective green interval duration (s);
kf = adjustment factor for effect of quality of progression,

defined as kf = (1 − p) fp /(1 − λ) (p is the proportion of
vehicles arriving during the green interval, and fp is a
supplemental adjustment factor for platoon arrival type;
note that this study does not consider the effect of signal
progression; i.e., kf = 1.0);

ca = capacity (pcu/s), determined by sλ, where s is saturation
flow rate (pcu/s);

x = degree of saturation, defined as q/ca;
q = average arrival flow rate from time 0 to time T (pcu/s); and
x1 = minimum of (1.0, x).

The development of a model for the variance of overall delay, Var[D],
is considered, which is defined as the summation of the variance of
uniform delay and the variance of random delay:

where Var[D1] is the variance of uniform delay, defined as the vari-
ance of delay that would be experienced by vehicles when all vehicles
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FIGURE 1 Queuing diagram illustrating components of delay.
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On the basis of Equation 7, the variance of delay for vehicles arriving
during time interval [0, T] can be obtained by assuming that the arrival
time t is a random variable with known distribution:

If the ratio of the variance to the mean of the vehicle arrivals, denoted
as Ia, is assumed to be constant during the time interval [0, T ] and
given, then

Note that if the vehicle arrivals follow a Poisson distribution, Ia is
equal to 1. In this study, Poisson arrival is assumed, but the parame-
ter Ia is still used for the convenience of future extension. With
Equation 9, Equation 8 can be further expressed as

If it is assumed that the arrival time is uniformly distributed during
the time interval [0, T ], Equation 10 can be further expressed as

It must be emphasized that Equation 11 is valid only when an over-
flow queue is present during the period from time 0 to time t. In real-
ity, however, it is possible that no overflow queue exists at time t,
and consequently no overflow delay is experienced. Therefore, it
can be concluded that Equation 11 represents an upper-bound esti-
mate of the variance of overflow delay. The actual variance would
be lower than that predicted by Equation 11, but the prediction error
should become smaller as the degree of saturation increases and the
associated likelihood of overflow queuing increases.

Figure 2 shows the relationships between the variances of over-
flow delay as functions of the degree of saturation represented by
Equations 5 and 11. Both curves are only appropriate within certain
flow domains: either highly undersaturated or highly oversaturated
traffic conditions. Consequently, it is hypothesized that the true rela-
tionship between the variance and the degree of saturation follows
the dashed curve in Figure 2. It can be observed that it is difficult, if
not impossible, to derive the functional relationship for the transitional
curve directly from Equations 5 and 11 through the traditional coor-
dinate transformation technique. Therefore, the nonlinear function,
expressed in Equation 12, is proposed to model the variance:

where x1 = max{1, x}.
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The parameters x0 and β determine the shape of the delay curve,
and their values need to be calibrated. It can be observed that the
proposed function has two desired attributes. First, the function is
asymptotic to the model for oversaturated conditions (Equation 11).
Second, similar to the undersaturated model (Equation 5), the func-
tion goes to zero as x approaches zero. However, although these
characteristics are necessary, they do not of themselves demonstrate
that the proposed function is realistic. Therefore, data from a simu-
lation model were used to calibrate appropriate values for x0 and β
and to validate the calibrated model, as discussed in the next section.

Expressions for the variances of uniform delay and overflow delay
having been developed, the variance associated with the overall
delay (Equation 7) can be expressed as

SIMULATION MODEL

In order to obtain data to calibrate and validate the proposed models,
a discrete cycle-by-cycle simulation system was developed.

Logic

The simulation model explicitly models the delay that a vehicle expe-
riences when it traverses a signalized intersection approach. The
approach is used exclusively for through traffic and is controlled by
a pretimed traffic signal. The vehicle arrivals are randomly distrib-
uted with the vehicle headway following a negative exponential
distribution with a minimum headway equal to 1 s.

The vehicle discharge pattern during the green interval depends on
the queue status at the approach. If no queue is present when a vehi-
cle arrives, it can immediately be discharged without delay. Other-
wise, the vehicle must wait until the discharge of the queued vehicles
ahead of it. Vehicle discharge headway is determined on the basis of
saturation flow rate.

The simulation starts with no queue present and resets the queue
size to zero whenever the elapsed clock time reaches a prespecified
evaluation time. The simulation terminates once the required total
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FIGURE 2 Models for variance of overflow delay.
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number of cycles has been simulated. The arrival time and delay asso-
ciated with each vehicle are recorded for use in the analysis stage.
Information such as the mean and variance of delays experienced by
vehicles arriving during the evaluation time can then be derived.

Verification

Before the simulation model was used to generate data for calibrat-
ing and testing the proposed models, it was verified against results
from other available models. Two comparisons were made. First, the
average overall delays obtained from the simulation model for a
given evaluation period under different saturation ratios were com-
pared with the results from the Australian (12), Canadian (13), High-
way Capacity Manual (HCM) (18), and Markov chain models (1).
For convenience, the scenario used in this comparison is the same as
that used by Olszewski (1) for a similar purpose. The evaluation
period duration was 15 min. The signal timing consisted of a cycle
time of 60 s, an effective green interval of 24 s, and a saturation flow
of 1,800 pcu/h. A total of 6,000 cycles, corresponding to 100 h of
traffic flow, were simulated for each degree of saturation. It was esti-
mated that this number of simulations would result in an estimation
error of less than 0.5 s at a significance level of 95 percent.

Figure 3 illustrates the average overall delay obtained from the
simulation model and the four other methods. It should be noted that
the overall delays associated with the HCM model were obtained by
multiplying the stopped delays from the HCM formula by 1.3 to
convert stopped delay to overall delay. The Markov chain model
assumes Poisson arrivals and constant departure during the green
interval. As would be expected, the simulation results are almost
identical to those of the Markov chain model. Among the three other
models, the Australian model shows the best agreement with the
simulation model under all levels of saturation, and the Canadian
model provides the best agreement with the simulation for over-
saturated conditions. It should be noted that the differences among
the HCM, Canadian, and Australian delay equations were expected
and have been addressed by Akcelik (19).

The objective of the second comparison was to provide an indi-
cation of the validity of the simulation model in estimating the vari-
ance of delays. The simulation results were compared with those
reported by Olszewski (1) in which the exact means and variances

of delays under various levels of saturation were obtained for a
given case from a Markov chain model. The system parameters are
the same as those for the previous comparison except that the eval-
uation time was 30 min instead of 15 min. In this comparison, the
number of cycles to be simulated was estimated on the basis of an
analysis of the confidence interval for the variance. It was estimated
that a total of 6,000 cycles for each degree of saturation would yield
an estimation error for the standard deviation of less than 2 s at a
significance level of 95 percent. Figure 4 shows the standard devi-
ations of delay estimated by the simulation model and those pro-
vided by Olszewski (1) from the Markov chain model. It can be
observed that the estimates of the standard deviation of delay from
the simulation model are quite consistent with those obtained from
the Markov chain model. The overestimation of the standard devi-
ation of delay by the simulation model, especially in the range x <
1.0, was expected because the Markov chain model does not con-
sider the variation of travel time within the cycle as quantified by
Equation 4.

MODEL CALIBRATION AND VERIFICATION

Calibration

To determine the appropriate parameter values for the overflow
delay variance model shown in Equation 3, a two-step sequential
calibration procedure was performed. The first step is to find the x0-
and β-values that would produce the best fit between the estimates
of the variance of overflow delay from Equation 12 and the esti-
mates from the simulation model (representing the true values) for
a given cycle time (c), effective green interval (ge), and evaluation
time (T ). Following the definition of Equation 3, the variance of ran-
dom delay from the simulation is obtained as the difference between
the variance of overall delay calculated from the delay of simulated
vehicles and the variance of uniform delay from Equation 4.

Because of the nonlinear relationship between the variables, a
nonlinear regression process was conducted by first transforming
Equation 12 into an equivalent linear equation:

Y a bX= + ( )14

FIGURE 3 Average overall delay estimated by Australian, Canadian,
HCM, Markov chain, and simulation models (cy = 60 s, ge = 24 s, 
s = 1,800 pcu /h, and t = te = 15 min; simulated cycles = 6,000).

FIGURE 4 Standard deviation of delay estimated by Markov chain
model and simulation model (cy = 60 s, ge = 24 s, s = 1,800 pcu /h,
and t = te = 30 min; simulated cycles = 6,000).
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where

X = ln(x),
a = β ln(x0), and
b = −β.

The simulation model was used to obtain the values of the vari-
ance of overflow delay (Var[D2]), which is the difference between
the variance of overall delay and the variance of uniform delay cal-
culated from Equation 4, under various combinations of ca, x, and
T. These data were transformed to X- and Y-values as in Equation
14. For a set of prespecified x-values, linear regressions were per-
formed to determine the values of a and b, which were sub-
sequently transformed back to values for x0 and β. The data points
used in regression were determined by simulation by fixing the val-
ues of x, ge, and T and varying the degree of saturation x from 0.8
to 1.2 with an increment of 0.05. Each data point results from a sim-
ulation of 15,000 cycles. The regressed x0 and β, together with (cy,
ge, T ), form a new data point (cy, ge, t, x0, β). By changing the val-
ues of the parameter set (cy, ge, T ) and repeating the regression
analysis, a number of such data points can be obtained. In this
study, a total of 18 points were generated with the following com-
binations of parameters: cy = {70, 90, 120}; λ = ge /cy = {0.2, 0.5,
0.8}; T = {900, 3600}. It was found that the linear relationship
shown in Equation 14 is statistically significant for each of the 
18 combinations with a minimum R2 of 0.95, which indicates that
the proposed functional form is appropriate.

In the second step, a series of correlation analyses of the rela-
tionships between the parameters (x0, β) and (cy, ge, T, λ, T/ca) were
conducted and the following best-fit equations were obtained:

(R2 = 0.87, t1 = 13.07, t2 = 3.84)

(R2 = 0.93, t1 = 13.07)

The obtained high R2-values indicate that both equations explain 
a large portion of the variation in the simulated data. All t-values
are greater than the critical t-value at the 5 percent level of signifi-
cance, which indicates that the included parameters are statistically
significant.

Evaluation

The simulation system is first used to estimate the variance of overall
delay corresponding to various evaluation times and traffic condi-
tions. A total of 210 combinations were simulated with the following
combinations of parameters: cy = {50, 60, 80, 100, 120}, λ = {0.3, 0.5,
0.7), t = {900, 3600}, and x = {0.5,0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2}.

Figure 5 shows the correlation between the standard deviation of
the delay obtained by the analytical model and the simulation results.
Each point represents the result of simulation runs of 15,000 cycles.
The approximate model exhibits no apparent bias and has a high
correlation with the simulated estimates (R2 = 96.1 percent).
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The calibrated model was further evaluated using results from
Olszewski (1) in which the exact variances of overflow delays under
various levels of saturation were obtained for a given case from a
Markov chain model. The values of the system parameters for the
case as well as the results are shown in Figure 6. It can be observed
that the estimates of the standard deviation of delay from the simu-
lation model are very consistent with those obtained from the Markov
chain model.

APPLICATIONS OF VARIANCE MODEL

Optimal Cycle Time

Average overall delay has traditionally been used as one criterion in
determining optimal cycle times. An examination is made to see if
there is an optimal cycle time that minimizes the variability of delay
that individual vehicles experience at a signal-controlled intersection.
An idealized two-phase, four-approach intersection with equal flows

FIGURE 5 Correlation of standard deviations
of overall delay estimated by analytical model
with simulation results (s = 1,800 pcu /h;
simulated cycles = 15,000 per combination).

FIGURE 6 Standard deviation of overflow delay
estimated by Markov chain model (1) and
simulation model (cy = 60 s, ge = 24 s, 
s = 1,800 pcu /h, and T = 30 min).
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on all approaches is considered. The saturation flow rate is 1,800 pcu/h
and the lost time at each phase is 4 s. Figure 7 shows the relationship
between the variance of overall delay and the average overall delay as
a function of cycle time. It can be observed that the average overall
delay and the variance of overall delay have similar trends with
respect to cycle length. Furthermore, the range of optimal cycle times
with respect to average overall delay (q = 600 pcu/h: optimal cy =
40 ~ 60 s, and q = 800 pcu/h: optimal cy = 80 ~ 100 s) overlaps with
those determined on the basis of minimizing the variance of overall
delay (q = 800 pcu/h: optimal cy = ~40 s and q = 800 pcu/h: optimal
cy = 90 ~ 120 s). This finding indicates that for the scenarios exam-
ined, the current practice of determining optimal cycle lengths on the
basis of minimizing average overall delay is appropriate with respect
to the objective of minimizing the variance in overall delays.

Variability of Level of Service

The possible use of delay variability in quantifying level of service for
signalized intersections is illustrated in this section. In the HCM (18),
level of service for signalized intersections is defined in terms of aver-
age overall stopped delay. With the ability to estimate the variance of
overall delay, it is feasible to integrate the concept of reliability into
design and analysis of signalized intersections. For example, delay of
a certain percentile, instead of average value, can be used to define
the level of service. A 95th-percentile delay means that 95 percent
of the vehicles would experience delay less than or equal to this delay.
The percentile value can be approximately estimated using E[D] + zα

(Var[D])1/2, where zα is a statistic for the normal distribution and can
be determined on the basis of the prespecified reliability level. Fig-
ure 8 shows average overall delay and 90th-percentile delay (with 
zα ≈ 1.3) under different degrees of saturation. It is assumed that ranges
of delay values used in defining each level of service in the HCM are
also applicable to individual vehicles, as shown in Figure 8. It can
be observed that for the given case with a degree of saturation of 0.9,
the average overall delay is 20 s, which would yield level-of-service
(LOS) C (point a). However, if the 90th-percentile delay is used, the

level of service would be D (point b). On the other hand, in order to
guarantee that 90 percent of the vehicles going though the intersec-
tion approach experience LOS C or higher, the degree of saturation
needs to be reduced to 0.8 (point c) by either increasing the capacity
or decreasing the demand.

CONCLUSIONS AND FUTURE RESEARCH

The development of an analytical model for estimating the variance
of delay at signal-controlled approaches is described. The model was
constructed on the basis of the delay evolution patterns under two
extreme traffic conditions: highly undersaturated and highly over-
saturated. A discrete cycle-by-cycle simulation model was developed
and used to generate data for calibrating and validating the proposed
models. The results of a correlation analysis indicate a remarkable
agreement between the model estimates of the standard deviation of
delay and simulation results (R2 = 96.1 percent).

The developed model provides a valuable tool for the planning,
design, and analysis of signal controls. Practical applications have
been demonstrated through its use in determining optimal cycle times
with respect to delay variability and in assessing level of service
according to the percentiles of overall delay.

The proposed analytical models were calibrated and validated with
simulation results that are based on several important assumptions,
including random traffic arrivals with constant flow rate and unlim-
ited queuing space. These assumptions may be overly restrictive and
are likely to be violated in practice. The impact of these assumptions
on the validity of these models has not yet been determined. It is
recommended that future research focus on the following aspects:
the potential impacts of the assumptions applied in this paper
should be quantified, and field data should be used in conjunction
with simulation results to calibrate and verify the proposed models.
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FIGURE 7 Relationship between optimal cycle times with respect
to mean and standard deviation of overall delay (two-phase, 
four-approach intersection with equal flows on all approaches;
saturation flow = 1,800 pcu /h; lost time = 4 s/phase).

FIGURE 8 Level of service and delay variability.
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